Na+/H+ exchanger inhibitor cariporide attenuates the mitochondrial Ca2+ overload and PTP opening.
نویسندگان
چکیده
The Na(+)/H(+) exchanger (NHE) inhibitor cariporide has a cardioprotective effect in various animal models of myocardial ischemia-reperfusion. Recent studies have suggested that cariporide interacts with mitochondrial Ca(2+) overload and the mitochondrial permeability transition (MPT); however, the precise mechanisms remain unclear. Therefore, we examined whether cariporide affects mitochondrial Ca(2+) overload and MPT. Isolated adult rat ventricular myocytes were used to study the effects of cariporide on hypercontracture induced by ouabain or phenylarsine oxide (PAO). Mitochondrial Ca(2+) concentration ([Ca(2+)](m)) and the mitochondrial membrane potential (DeltaPsi(m)) were measured by loading myocytes with rhod-2 and JC-1, respectively. We also examined the effect of cariporide on the MPT using tetramethylrhodamine methyl ester (TMRM) and oxidative stress generated by laser illumination. Cariporide (1 microM) prevented ouabain-induced hypercontracture (from 40 +/- 2 to 24 +/- 2%, P < 0.05) and significantly attenuated ouabain-induced [Ca(2+)](m) overload (from 149 +/- 6 to 121 +/- 5% of the baseline value, P < 0.05) but did not affect DeltaPsi(m). These results indicate that cariporide attenuates the [Ca(2+)](m) overload without the accompanying depolarization of DeltaPsi(m). Moreover, cariporide increased the time taken to induce the MPT (from 79 +/- 11 to 137 +/- 20 s, P < 0.05) and also attenuated PAO-induced hypercontracture (from 59 +/- 3 to 50 +/- 4%, P < 0.05). Our data indicate that cariporide attenuates [Ca(2+)](m) overload and MPT. Thus these effects might potentially contribute to the mechanisms of cardioprotection afforded by NHE inhibitors.
منابع مشابه
Cariporide (HOE642), a selective Na+-H+ exchange inhibitor, inhibits the mitochondrial death pathway.
BACKGROUND The Na+-H+ exchanger figures prominently in cardiac ischemia-reperfusion injury. Several experimental and clinical studies have demonstrated a cardioprotective effect of Na+-H+ exchanger inhibition; however, the precise mechanisms have not been established. METHODS AND RESULTS We examined the effects of cariporide (HOE642, 10 micromol/L) on cell death induced by oxidative stress (H...
متن کاملMechanisms underlying afterload-induced exacerbation of myocardial infarct size: role of T-type Ca2+ channel.
One consequence of elevated afterload pressure is the activation of the angiotensin II type 1 receptor and nonspecific cation channels with subsequent Ca2+ accumulation via the Na+/H(+)-Na+/Ca2+ exchanger combination and the T-type or L-type Ca2+ channels. Intracellular Ca2+ overload is cytotoxic, in part, by inducing the mitochondrial permeability transition (MPT) pore. Therefore, we tested th...
متن کاملChronic inhibition of Na+/H+-exchanger attenuates cardiac hypertrophy and prevents cellular remodeling in heart failure.
OBJECTIVE In patients with heart disease, the transition from compensatory hypertrophy to heart failure (HF) is associated with altered calcium handling. Up-regulated Na(+)/H(+)-exchanger (NHE-1) activity underlies increased [Na(+)](i) and disturbance of cellular calcium handling in HF. We hypothesize that chronic inhibition of NHE-1 activity prevents the hypertrophic response, cellular remodel...
متن کاملLimiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation prevents excess mitochondrial Ca2+ accumulation and attenuates myocardial injury.
BACKGROUND intracellular Na+ accumulation during ischemia and reperfusion leads to cytosolic Ca2+ overload through reverse-mode operation of the sarcolemmal Na+ -Ca2+ exchanger. Cytosolic Ca2+ accumulation promotes mitochondrial Ca2+ (Ca2+ m) overload, leading to mitochondrial injury. We investigated whether limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation (VF) ...
متن کاملCariporide preserves mitochondrial proton gradient and delays ATP depletion in cardiomyocytes during ischemic conditions.
The mechanism by which inhibition of Na+/H+ exchanger (NHE) reduces cell death in ischemic-reperfused myocardium remains controversial. This study investigated whether cariporide could inhibit mitochondrial NHE during ischemia, delaying H+ gradient dissipation and ATP exhaustion. Mouse cardiac myocytes (HL-1) were submitted to 1 h of simulated ischemia (SI) with NaCN/deoxyglucose (pH 6.4), with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 293 6 شماره
صفحات -
تاریخ انتشار 2007